Pesquisar neste blogue

quinta-feira, 4 de maio de 2017

Core Stability in Athletes: A Critical Analysis of Current Guidelines

https://link.springer.com/article/10.1007/s40279-016-0597-7

  • Klaus Wirth 
  • Hagen Hartmann
  • Christoph Mickel
  • Elena Szilvas
  • Michael Keiner
  • Andre Sander


Abstract

Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete’s health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as ‘selective activation’ and training on unstable surfaces.

References

  1. 1.
    Hoshikawa Y, Iida T, Muramatsu M, et al. Effects of stabilization training on trunk muscularity and physical performances in youth soccer players. J Strength Cond Res. 2013;27(11):3142–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Nesser TW, Huxel KC, Tincher JL, et al. The relationship between core stability and performance in division I Football players. J Strength Cond Res. 2008;22(6):1750–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and performance. J Strength Cond Res. 2011;25(1):252–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Sharrock C, Cropper J, Mostad J, et al. A pilot study of core stability and athletic performance: is there a relationship? Int J Sports Phys Ther. 2011;6(2):63–74.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Stanton R, Reaburn PR, Humphries B. The effect of short-term swiss ball training on core stability and running economy. J Strength Cond Res. 2004;18(3):522–8.PubMedGoogle Scholar
  6. 6.
    Tse MA, McManus AM, Masters RSW. Development and validation of a core endurance intervention program. J Strength Cond Res. 2005;19(3):547–52.PubMedGoogle Scholar
  7. 7.
    Shinkle J, Nesser TW, Demchak TJ, et al. Effect of core strength on the measure of power in the extremities. J Strength Cond Res. 2012;26(2):373–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Behm DG, Leonard AM, Young WB, et al. Trunk muscle electromyographic activity with unstable and unilateral exercises. J Strength Cond Res. 2005;19(1):193–201.
  9. 9.
    Cissik JM. Programming abdominal training. Part I. Strength Cond J. 2002;24(1):9–15.CrossRefGoogle Scholar
  10. 10.
    Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189–98.PubMedCrossRefGoogle Scholar
  11. 11.
    Liemohn WP, Baumgartner TA, Gagnon LH. Measuring core stability. J Strength Cond Res. 2005;19(3):583–6.PubMedGoogle Scholar
  12. 12.
    Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Bayramoğlu M, Akman MN, Klnç Ş, et al. Isokinetic measurement of trunk muscle strength in women with chronic low-back pain. Am J Phys Med Rehabil. 2001;80(9):650–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Parkkola R, Rytökoski U, Kormano M. Magnetic resonance imaging of the discs and trunk muscles in patients with chronic low back pain and healthy control subjects. Spine (Phila Pa 1976). 1993;18(7):830–6.CrossRefGoogle Scholar
  16. 16.
    Lederman E. The myth of core stability. J Bodyw Mov Ther. 2010;14(1):84–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Ezechieli M, Siebert CH, Ettinger M, et al. Muscle strength of the lumbar spine in different sports. Technol Health Care. 2013;21(4):379–86.PubMedGoogle Scholar
  18. 18.
    Cissik JM. The role of core training in athletic performance, injury prevention, and injury treatment. Strength Cond J. 2011;33(1):10–5.CrossRefGoogle Scholar
  19. 19.
    Willardson JM. Core stability training. J Strength Cond Res. 2007;21(3):979–85.PubMedGoogle Scholar
  20. 20.
    Elia DS, Bohannon RW, Cameron D, et al. Dynamic pelvic stabilization during hip flexion: a comparison study. J Orthop Sports Phys Ther. 1996;24(1):30–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Gamble P. Periodization of training for team sports athletes. Strength Cond J. 2006;28(5):56–66.CrossRefGoogle Scholar
  22. 22.
    McGill S. Core training: evidence translating to better performance and injury prevention. Strength Cond J. 2010;32(3):33–46.CrossRefGoogle Scholar
  23. 23.
    Behm DG, Drinkwater EJ, Willardson JM, et al. The use of instability to train the core musculature. Appl Physiol Nutr Metab. 2010;35(1):91–108.PubMedCrossRefGoogle Scholar
  24. 24.
    Cissik JM. Programming abdominal training. Part II. Strength Cond J. 2002;24(2):9–12.CrossRefGoogle Scholar
  25. 25.
    Panjabi M, Abumi K, Duranceau J, et al. Spinal stability and intersegmental muscle forces. Spine (Phila Pa 1976). 1989;14(2):194–200.CrossRefGoogle Scholar
  26. 26.
    Akagi R, Kanehisa H, Kawakami Y, et al. Establishing a new index of muscle cross-sectional area and its relationship with isometric muscle strength. J Strength Cond Res. 2008;22(1):82–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Akagi R, Takai Y, Kato E, et al. Relationships between muscle strength and indices of muscle cross-sectional area determined during maximal voluntary contraction in middle-aged and elderly individuals. J Strength Cond Res. 2009;23(4):1258–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Alway SE, Stray-Gundersen J, Grumbt WH, et al. Muscle cross-sectional area and torque in resistance-trained subjects. Eur J Appl Physiol Occup Physiol. 1990;60(2):86–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Bamman MM, Newcomer BR, Larson-Meyer DE, et al. Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc. 2000;32(7):1307–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Brechue WF, Abe T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur J Appl Physiol. 2002;86(4):327–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Fukunaga T, Miyatani M, Tachi M, et al. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172(4):249–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Gibbons LE, Latikka P, Videman T, et al. The association of trunk muscle cross-sectional area and magnetic resonance image parameters with isokinetic and psychophysical lifting strength and static back muscle endurance in men. J Spinal Disord. 1997;10(5):398–403.PubMedCrossRefGoogle Scholar
  33. 33.
    Häkkinen K, Komi P. Changes in electrical and mechanical behavior of leg extensor muscles during heavy resistance strength training. Scand J Sports Sci. 1985;7(2):55–64.Google Scholar
  34. 34.
    Häkkinen K, Komi P, Kauhanen H. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises. Int J Sports Med. 1986;07(03):144–51.CrossRefGoogle Scholar
  35. 35.
    Ikai M, Fukunaga T. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1968;26(1):26–32.PubMedGoogle Scholar
  36. 36.
    Ikai M, Fukunaga T. A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1970;28(3):173–80.PubMedGoogle Scholar
  37. 37.
    Maughan RJ. Relationship between muscle strength and muscle cross-sectional area. Sports Med. 1984;1(4):263–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338(1):37–49.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Saczuk J, Wasiluk A. Dependence between body tissue composition and results achieved by weightlifters. Balt J Health Phys Act. 2012;4(1):15–20.Google Scholar
  40. 40.
    Tonson A, Ratel S, Fur YL, Cozzone P, Bendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc. 2008;40(5):918–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Young A, Stokes M, Crowe M. Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest. 1984;14(4):282–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Young A, Stokes M, Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin Physiol. 1985;5(2):145–54.PubMedCrossRefGoogle Scholar
  43. 43.
    McGill SM, Marshall L, Andersen J. Low back loads while walking and carrying: comparing the load carried in one hand or in both hands. Ergonomics. 2013;56(2):293–302.PubMedCrossRefGoogle Scholar
  44. 44.
    Tahcic D. Strength training for women high jumpers. In: Women’s track and field athletics. The official report of the first IAAF congress on womens’ athletics. Mainz, F.R. Germany, p. 340–5.
  45. 45.
    Deporte E, Van Gheluwe B. Ground reaction forces and moments in javelin throwing. Biomechanics XI-B. 1988;575–81.
  46. 46.
    Dursenev L, Raevsky L. Strength training of jumpers. Track Field Q Rev. 1982;4:53–5.Google Scholar
  47. 47.
    Hay JG. The biomechanics of sports techniques. Englewood Cliffs, NJ: Prentice Hall; 1985.
  48. 48.
    Kreighbaum E. Biomechanics. A qualitative approach for studying human movement. Boston: Allyn and Bacon; 1996.
  49. 49.
    Nielsen L. Strength training in explosive-type sports: Athletics-jumping. In: Aagaard P, Madsen K, Magnusson P, Bojsen-Møller J, editors. Strength training for sport, health, aging, and rehabilitation. 5th international conference on strength training; Odense: University of SOuthern Denmark, 2006, p. 32–7.
  50. 50.
    Panzer V, Wood G, Bates B, et al. Lower extremity loads in landings of elite gymnasts. Biomechanics XI-B. 1988;727–35.
  51. 51.
    Storey A, Smith HK. Unique aspects of competitive weightlifting: performance, training and physiology. Sports Med. 2012;42(9):769–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Bergmark A. Stability of the lumbar spine. Acta Orthop Scand. 1989;60(sup230):1–54.CrossRefGoogle Scholar
  53. 53.
    O’Sullivan PB. Masterclass. Lumbar segmental ‘instability’: clinical presentation and specific stabilizing exercise management. Man Ther. 2000;5(1):2–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Richardson CA, Jull GA. Muscle control–pain control. What exercises would you prescribe? Man Ther. 1995;1(1):2–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Hibbs AE, Thompson KG, French D, et al. Optimizing performance by improving core stability and core strength. Sports Med. 2008;38(12):995–1008.PubMedCrossRefGoogle Scholar
  56. 56.
    Willardson JM. Core stability training for healthy athletes: a different paradigm for fitness professionals. J Strength Cond. 2007;29(6):42.Google Scholar
  57. 57.
    Stokes IAF, Gardner-Morse MG, Henry SM. Intra-abdominal pressure and abdominal wall muscular function: spinal unloading mechanism. Clin Biomech. 2010;25(9):859–66.CrossRefGoogle Scholar
  58. 58.
    Stokes IAF, Gardner-Morse MG, Henry SM. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups. Clin Biomech. 2011;26(8):797–803.CrossRefGoogle Scholar
  59. 59.
    Grenier SG, McGill SM. Quantification of lumbar stability by using 2 different abdominal activation strategies. Arch Phys Med Rehabil. 2007;88(1):54–62. doi:10.1016/j.apmr.2006.10.014.PubMedCrossRefGoogle Scholar
  60. 60.
    Kavcic N, Grenier S, McGill SM. Determining the stabilizing role of individual torso muscles during rehabilitation exercises. Spine (Phila Pa 1976). 2004;29(11):1254–65.CrossRefGoogle Scholar
  61. 61.
    Cholewicki J, VanVliet JJ 4th. Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech. 2002;17(2):99–105.CrossRefGoogle Scholar
  62. 62.
    McGill SM, Grenier S, Kavcic N, et al. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Stevens VK, Bouche KG, Mahieu NN, et al. Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet Disord. 2006;7(1):75.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vera-Garcia FJ, Elvira JLL, Brown SHM, et al. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol. 2007;17(5):556–67.PubMedCrossRefGoogle Scholar
  65. 65.
    Stanton T, Kawchuk G. The effect of abdominal stabilization contractions on posteroanterior spinal stiffness. Spine (Phila Pa 1976). 2008;33(6):694–701.CrossRefGoogle Scholar
  66. 66.
    Hodges PW, Richardson CA. Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. J Spinal Disord. 1998;11(1):46–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Hodges P, Cresswell A, Thorstensson A. Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res. 1999;124(1):69–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Adams MA, Hutton WC. Gradual disc prolapse. Spine (Phila Pa 1976). 1985;10(6):524–31.CrossRefGoogle Scholar
  69. 69.
    Arokoski JP, Valta T, Airaksinen O, et al. Back and abdominal muscle function during stabilization exercises. Arch Phys Med Rehabil. 2001;82(8):1089–98.PubMedCrossRefGoogle Scholar
  70. 70.
    Arokoski JPA, Kankaanpää M, Valta T, et al. Back and hip extensor muscle function during therapeutic exercises. Arch Phys Med Rehabil. 1999;80(7):842–50.PubMedCrossRefGoogle Scholar
  71. 71.
    Crisco JJ, Panjabi MM. The intersegmental and multisegmental muscles of the lumbar spine. Spine (Phila Pa 1976). 1991;16(7):793–9.CrossRefGoogle Scholar
  72. 72.
    Dofferhof A, Vink P. The stabilising function of the mm. iliocostales and the mm. multifidi during walking. J Anat. 1985;140(Pt 2):329.PubMedPubMedCentralGoogle Scholar
  73. 73.
    França FR, Burke TN, Hanada ES, et al. Segmental stabilization and muscular strengthening in chronic low back pain: a comparative study. Clinics. 2010;65(10):1013–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jonsson B. The functions of individual muscles in the lumbar part of the spinae muscle. Electromyography. 1969;10(1):5–21.Google Scholar
  75. 75.
    Juker D, McGill S, Kropf P, et al. Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Med Sci Sports Exerc. 1998;30(2):301–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Tarnanen SP, Siekkinen KM, Häkkinen AH, et al. Core muscle activation during dynamic upper limb exercises in women. J Strength Cond Res. 2012;26(12):3217–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Hodges PW, Cresswell AG, Daggfeldt K, et al. Three dimensional preparatory trunk motion precedes asymmetrical upper limb movement. Gait Posture. 2000;11(2):92–101.PubMedCrossRefGoogle Scholar
  78. 78.
    Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. Spine (Phila Pa 1976). 1996;21(22):2640–50.CrossRefGoogle Scholar
  79. 79.
    Hodges PW, Richardson CA. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997;114(2):362–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132–42.PubMedGoogle Scholar
  81. 81.
    Cresswell AG. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol Occup Physiol. 1993;66(4):315–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Cresswell AG, Grundström H, Thorstensson A. Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand. 1992;144(4):409–18.PubMedCrossRefGoogle Scholar
  83. 83.
    Cresswell AG, Oddsson L, Thorstensson A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp Brain Res. 1994;98(2):336–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Cresswell AG, Thorstensson A. Changes in intra-abdominal pressure, trunk muscle activation and force during isokinetic lifting and lowering. Eur J Appl Physiol Occup Physiol. 1994;68(4):315–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Bogduk N, Macintosh JE. The applied anatomy of the thoracolumbar fascia. Spine (Phila Pa 1976). 1984;9(2):164–70.CrossRefGoogle Scholar
  86. 86.
    Tesh KM, Dunn JS, Evans JH. The abdominal muscles and vertebral stability. Spine (Phila Pa 1976). 1987;12(5):501–8.CrossRefGoogle Scholar
  87. 87.
    Hodges P. Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res. 2001;141(2):261–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Hodges P, Kaigle Holm A, Holm S, et al. Intervertebral stiffness of the spine is increased by evoked contraction of transversus abdominis and the diaphragm: in vivo porcine studies. Spine (Phila Pa 1976). 2003;28(23):2594–601.CrossRefGoogle Scholar
  89. 89.
    Mannion AF, Pulkovski N, Schenk P, et al. A new method for the noninvasive determination of abdominal muscle feedforward activity based on tissue velocity information from tissue Doppler imaging. J Appl Physiol. 2008;104(4):1192–201.PubMedCrossRefGoogle Scholar
  90. 90.
    Tsao H, Hodges PW. Immediate changes in feedforward postural adjustments following voluntary motor training. Exp Brain Res. 2007;181(4):537–46.PubMedCrossRefGoogle Scholar
  91. 91.
    Tsao H, Hodges PW. Persistence of improvements in postural strategies following motor control training in people with recurrent low back pain. J Electromyogr Kinesiol. 2008;18(4):559–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Urquhart DM, Hodges PW, Story IH. Postural activity of the abdominal muscles varies between regions of these muscles and between body positions. Gait Posture. 2005;22(4):295–301.PubMedCrossRefGoogle Scholar
  93. 93.
    Moseley GL, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine (Phila Pa 1976). 2002;27(2):E29–36.CrossRefGoogle Scholar
  94. 94.
    White SG, McNair PJ. Abdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activity. Clin Biomech. 2002;17(3):177–84.CrossRefGoogle Scholar
  95. 95.
    Allison GT, Morris SL. Transversus abdominis and core stability: has the pendulum swung? Br J Sports Med. 2008;42(11):630–1.CrossRefGoogle Scholar
  96. 96.
    Allison GT, Morris SL, Lay B. Feedforward responses of transversus abdominis are directionally specific and act asymmetrically: implications for core stability theories. J Orthop Sports Phys Ther. 2008;38(5):228–37.PubMedCrossRefGoogle Scholar
  97. 97.
    Morris SL, Lay B, Allison GT. Corset hypothesis rebutted—transversus abdominis does not co-contract in unison prior to rapid arm movements. Clin Biomech. 2012;27(3):249–54.CrossRefGoogle Scholar
  98. 98.
    Morris SL, Lay B, Allison GT. Transversus abdominis is part of a global not local muscle synergy during arm movement. Hum Mov Sci. 2013;32(5):1176–85.PubMedCrossRefGoogle Scholar
  99. 99.
    Tokuno CD, Cresswell AG, Thorstensson A, et al. Recruitment order of the abdominal muscles varies with postural task. Scand J Med Sci Sports. 2011;23(3):349–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Bjerkefors A, Ekblom MM, Josefsson K, et al. Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther. 2010;15(5):502–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Strohl K, Mead J, Banzett R, et al. Regional differences in abdominal muscle activity during various maneuvers in humans. J Appl Physiol. 1981;51(6):1471–6.PubMedGoogle Scholar
  102. 102.
    Goldman JM, Lehr RP, Millar AB, et al. An electromyographic study of the abdominal muscles during postural and respiratory manoeuvres. J Neurol Neurosurg Psychiatry. 1987;50(7):866–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Urquhart DM, Hodges PW, Allen TJ, et al. Abdominal muscle recruitment during a range of voluntary exercises. Man Ther. 2005;10(2):144–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Sapsford RR, Hodges PW, Richardson CA, et al. Co-activation of the abdominal and pelvic floor muscles during voluntary exercises. Neurourol Urodyn. 2000;20(1):31–42.CrossRefGoogle Scholar
  105. 105.
    Akuthota V, Nadler SF. Core strengthening. Arch Phys Med Rehabil. 2004;85:86–92.CrossRefGoogle Scholar
  106. 106.
    Barr KP, Griggs M, Cadby T. Lumbar stabilization: core concepts and current literature, part 1. Am J Phys Med Rehabil. 2005;84(6):473–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Barr KP, Griggs M, Cadby T. Lumbar stabilization: a review of core concepts and current literature, part 2. Am J Phys Med Rehabil. 2007;86(1):72–80.PubMedCrossRefGoogle Scholar
  108. 108.
    Danneels LA, Vanderstraeten GG, Cambier DC, et al. CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J. 2000;9(4):266–72.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Faries MD, Greenwood M. Core training: stabilizing the confusion. J Strength Cond. 2007;29(2):10.Google Scholar
  110. 110.
    Hides JA, Richardson CA, Jull GA. Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine (Phila Pa 1976). 1996;21(23):2763–9.CrossRefGoogle Scholar
  111. 111.
    Johnson P. Training the trunk in the athlete. Strength Cond J. 2002;24(1):52–9.CrossRefGoogle Scholar
  112. 112.
    Norris CM. Spinal stabilisation. Physiotherapy. 1995;81(3):138–46.CrossRefGoogle Scholar
  113. 113.
    O’Sullivan PB, Twomey L, Allison GT. Dynamic stabilization of the lumbar spine. Crit Rev Phys Rehabil Med. 1997;9(3–4):315–30.CrossRefGoogle Scholar
  114. 114.
    Sitilertpisan P, Hides J, Stanton W, et al. Multifidus muscle size and symmetry among elite weightlifters. Phys Ther Sport. 2012;13(1):11–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Tsao H, Druitt TR, Schollum TM, et al. Motor training of the lumbar paraspinal muscles induces immediate changes in motor coordination in patients with recurrent low back pain. J Pain. 2010;11(11):1120–8.PubMedCrossRefGoogle Scholar
  116. 116.
    van Tulder M, Malmivaara A, Esmail R, et al. Exercise therapy for low back pain. Spine (Phila Pa 1976). 2000;25(21):2784–96.CrossRefGoogle Scholar
  117. 117.
    Zhao W-P, Kawaguchi Y, Matsui H, et al. Histochemistry and morphology of the multifidus muscle in lumbar disc herniation. Spine (Phila Pa 1976). 2000;25(17):2191–9.CrossRefGoogle Scholar
  118. 118.
    D’hooge R, Cagnie B, Crombez G, et al. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain. Clin J Pain. 2013;29(3):187–94.PubMedCrossRefGoogle Scholar
  119. 119.
    Dickx N, Cagnie B, Achten E, et al. Changes in lumbar muscle activity because of induced muscle pain evaluated by muscle functional magnetic resonance imaging. Spine (Phila Pa 1976). 2008;33(26):E983–9.CrossRefGoogle Scholar
  120. 120.
    Huang Q, Li D, Yokotsuka N, et al. The intervention effects of different treatment for chronic low back pain as assessed by the cross-sectional area of the multifidus muscle. J Phys Ther Sci. 2013;25(7):811–3.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Moffroid MT, Haugh LD, Haig AJ, et al. Endurance training of trunk extensor muscles. Phys Ther. 1993;73(1):3–10.Google Scholar
  122. 122.
    Hides J, Stanton W, McMahon S, et al. Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. J Orthop Sports Phys Ther. 2008;38(3):101–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Kader DF, Wardlaw D, Smith FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55(2):145–9.PubMedCrossRefGoogle Scholar
  124. 124.
    MacDonald DA, Lorimer Moseley G, Hodges PW. The lumbar multifidus: does the evidence support clinical beliefs? Man Ther. 2006;11(4):254–63.PubMedCrossRefGoogle Scholar
  125. 125.
    Sung PS. Multifidi muscles median frequency before and after spinal stabilization exercises. Arch Phys Med Rehabil. 2003;84(9):1313–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Parkkola R, Kujala U, Rytökoski U. Response of the trunk muscles to training assessed by magnetic resonance imaging and muscle strength. Eur J Appl Physiol Occup Physiol. 1992;65(5):383–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Manniche C, Bentzen L, Hesselse G, et al. Clinical trial of intensive muscle training for chronic back pain. Lancet. 1988;332(8626–8627):1473–6.CrossRefGoogle Scholar
  128. 128.
    Jorgensen K, Nicolaisen TOM. Trunk extensor endurance: determination and relation to low-back trouble. Ergonomics. 1987;30(2):259–67.PubMedCrossRefGoogle Scholar
  129. 129.
    Moffroid M, Haig A, Henry S, et al. Power spectrum analysis of longissimus and multifidus at one vertebral level. Orthop Trans. 1991;15:303.Google Scholar
  130. 130.
    Moffroid M, Reid S, Henry SM, et al. Some Endurance measures in persons with chronic low back pain. J Orthop Sports Phys Ther. 1994;20(2):81–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Stokes IAF, Henry SM, Single RM. Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clin Biomech. 2003;18(1):9–13.CrossRefGoogle Scholar
  132. 132.
    Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement. J Electromyogr Kinesiol. 2003;13(5):477–89.PubMedCrossRefGoogle Scholar
  133. 133.
    Enoka RM, Duchateau J. Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. J Appl Physiol. 2015;119(12):1516–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Beith ID, Synnott RE, Newman SA. Abdominal muscle activity during the abdominal hollowing manoeuvre in the four point kneeling and prone positions. Man Ther. 2001;6(2):82–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Burden AM, Redmond C. Abdominal and hip flexor muscle activity during 2 minutes of sit-ups and curl-ups. J Strength Cond Res. 2013;27(8):2119–28.PubMedCrossRefGoogle Scholar
  136. 136.
    Chanthapetch P, Kanlayanaphotporn R, Gaogasigam C, et al. Abdominal muscle activity during abdominal hollowing in four starting positions. Man Ther. 2009;14(6):642–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Kernell D. The motoneurone and its muscle fibres. Oxford: Oxford University Press (OUP); 2006.
  138. 138.
    Marshall P, Murphy B. Changes in muscle activity and perceived exertion during exercises performed on a swiss ball. Appl Physiol Nutr Metab. 2006;31(4):376–83.PubMedCrossRefGoogle Scholar
  139. 139.
    Marshall PW, Murphy BA. Core stability exercises on and off a Swiss ball. Arch Phys Med Rehabil. 2005;86(2):242–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Vezina MJ, Hubley-Kozey CL. Muscle activation in therapeutic exercises to improve trunk stability. Arch Phys Med Rehabil. 2000;81(10):1370–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Boyle M. Functional training for sports. Champaign, IL: Human Kinetics; 2004.
  142. 142.
    Boyle M. Advances in functional training. Train Techniques for Coaches, Personal Trainers. 2010.
  143. 143.
    Verstegen M, Williams P. Core performance: the revolutionary workout program to transform your body and your life. Rodale; 2005.
  144. 144.
    Verstegen M, Williams P. Core performance golf: The revolutionary training and nutrition program for success on and off the course. New York: Rodale; 2009.
  145. 145.
    Bader DL, Bouten C. Biomechanics of soft tissues. In: Dvir Z, editor. Clinical biomechanics. New York: Churchill Livingstone; 2000. p. 35–64.Google Scholar
  146. 146.
    Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech. 1989;4:iii-27.
  147. 147.
    Contreras B, Schoenfeld B. To crunch or not to crunch: an evidence-based examination of spinal flexion exercises, their potential risks, and their applicability to program design. Strength Cond J. 2011;33(4):8–18.CrossRefGoogle Scholar
  148. 148.
    Jager M, Luttmann A. Compressive strength of lumbar spine elements related to age, gender, and other influences. Electromyographical Kinesiology. Amsterdam: Elsevier; 1991. p. 291–4.Google Scholar
  149. 149.
    Jensen GM. Biomechanics of the lumbar intervertebral disk: a review. Phys Ther. 1980;60(6):765–73.PubMedGoogle Scholar
  150. 150.
    McGill SM. The biomechanics of low back injury: Implications on current practice in industry and the clinic. J Biomech. 1997;30(5):465–75.PubMedCrossRefGoogle Scholar
  151. 151.
    Potvin JR, Norman RW, McGill SM. Reduction in anterior shear forces on the disc by the lumbar musculature. Clin Biomech. 1991;6(2):88–96.CrossRefGoogle Scholar
  152. 152.
    Krismer M, Haid C, Rabl W. The contribution of anulus fibers to torque resistance. Spine (Phila Pa 1976). 1996;21(22):2551–7.CrossRefGoogle Scholar
  153. 153.
    Hickey DS, Hukins DWL. Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine (Phila Pa 1976). 1980;5(2):106–16.CrossRefGoogle Scholar
  154. 154.
    Schmidt H, Kettler A, Heuer F, et al. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine (Phila Pa 1976). 2007;32(7):748–55.CrossRefGoogle Scholar
  155. 155.
    Brown T, Hansen RJ, Yorra AJ. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs. J Bone Joint Surg Am. 1957;39(5):1135–64.PubMedCrossRefGoogle Scholar
  156. 156.
    Roaf R. A study of the mechanics of spinal injuries. J Bone Joint Surg B. 1960;42(4):810–23.Google Scholar
  157. 157.
    Virgin W. Experimental investigations into the physical properties of the intervertebral disc. J Bone Joint Surg B. 1951;33(4):607–11.Google Scholar
  158. 158.
    Torén A. Muscle activity and range of motion during active trunk rotation in a sitting posture. Appl Ergon. 2001;32(6):583–91.PubMedCrossRefGoogle Scholar
  159. 159.
    Nachemson AL. Disc pressure measurements. Spine (Phila Pa 1976). 1981;6(1):93–7.CrossRefGoogle Scholar
  160. 160.
    Farfan HF, Gracovetsky S. The nature of instability. Spine (Phila Pa 1976). 1984;9(7):714–9.CrossRefGoogle Scholar
  161. 161.
    Hart DL, Stobbe TJ, Jaraied M. Effect of lumbar posture on lifting. Spine (Phila Pa 1976). 1987;12(2):138–45.CrossRefGoogle Scholar
  162. 162.
    Willardson JM. The effectiveness of resistance exercises performed on unstable equipment. Strength Cond J. 2004;26(5):70–4.CrossRefGoogle Scholar
  163. 163.
    Anderson K, Behm DG. Trunk muscle activity increases with unstable squat movements. Can J Appl Physiol. 2005;30(1):33–45.PubMedCrossRefGoogle Scholar
  164. 164.
    Behm DG, Anderson K, Curnew RS. Muscle force and activation under stable and unstable conditions. J Strength Cond Res. 2002;16(3):416–22.PubMedGoogle Scholar
  165. 165.
    Bressel E, Willardson JM, Thompson B, et al. Effect of instruction, surface stability, and load intensity on trunk muscle activity. J Electromyogr Kinesiol. 2009;19(6):e500–4.PubMedCrossRefGoogle Scholar
  166. 166.
    Chulvi-Medrano I, García-Massó X, Colado JC, et al. Deadlift muscle force and activation under stable and unstable conditions. J Strength Cond Res. 2010;24(10):2723–30.PubMedCrossRefGoogle Scholar
  167. 167.
    Clark DR, Lambert MI, Hunter AM. Muscle activation in the loaded free barbell squat. J Strength Cond Res. 2012;26(4):1169–78.PubMedCrossRefGoogle Scholar
  168. 168.
    Kibele A, Behm DG. Seven weeks of instability and traditional resistance training effects on strength, balance and functional performance. J Strength Cond Res. 2009;23(9):2443–50.PubMedCrossRefGoogle Scholar
  169. 169.
    Li Y, Cao C, Chen X. Similar electromyographic activities of lower limbs between squatting on a reebok core board and ground. J Strength Cond Res. 2013;27(5):1349–53.PubMedCrossRefGoogle Scholar
  170. 170.
    Wahl MJ, Behm DG. Not all instability training devices enhance muscle activation in highly resistance-trained individuals. J Strength Cond Res. 2008;22(4):1360–70.PubMedCrossRefGoogle Scholar
  171. 171.
    Willardson J, Fontana FE, Bressel E. Effect of surface stability on core muscle activity for dynamic resistance exercises. Int J Sports Physiol Perform. 2009;97:97–109.CrossRefGoogle Scholar
  172. 172.
    Zemková E, Jeleň M, Kováčiková Z, et al. Power outputs in the concentric phase of resistance exercises performed in the interval mode on stable and unstable surfaces. J Strength Cond Res. 2012;26(12):3230–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Drinkwater EJ, Pritchett EJ, Behm DG. Effect of instability and resistance on unintentional squat-lifting kinetics. Int J Sports Physiol Perform. 2007;2(4):400–13.PubMedCrossRefGoogle Scholar
  174. 174.
    Hartmann H, Wirth K, Klusemann M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med. 2013;43(10):993–1008.PubMedCrossRefGoogle Scholar
  175. 175.
    Keiner M, Sander A, Wirth K, et al. Correlations between maximal strength tests at different squat depths and sprint performance in adolescent soccer players. Am J Sports Sci. 2014;2(1):1–7.CrossRefGoogle Scholar
  176. 176.
    Andersen LL, Magnusson SP, Nielsen M, et al. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther. 2006;86(5):683–97.PubMedGoogle Scholar
  177. 177.
    Hartmann H, Wirth K, Klusemann M, et al. Influence of squatting depth on jumping performance. J Strength Cond Res. 2012;26(12):3243–61.PubMedCrossRefGoogle Scholar
  178. 178.
    Anderson KG, Behm DG. Maintenance of emg activity and loss of force output with instability. J Strength Cond Res. 2004;18(3):637–40.PubMedGoogle Scholar
  179. 179.
    Leetun DT, Ireland ML, Willson JD, et al. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–34.PubMedCrossRefGoogle Scholar
  180. 180.
    McBride JM, Cormie P, Deane R. Isometric squat force output and muscle activity in stable and unstable conditions. J Strength Cond Res. 2006;20(4):915–8.PubMedGoogle Scholar
  181. 181.
    Saeterbakken AH, Fimland MS. Muscle force output and electromyographic activity in squats with various unstable surfaces. J Strength Cond Res. 2013;27(1):130–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Santana JC, Vera-Garcia FJ, McGill SM. A kinetic and electromyographic comparison of the standing cable press and bench press. J Strength Cond Res. 2007;21(4):1271.PubMedGoogle Scholar
  183. 183.
    Hamlyn N, Behm DG, Young WB. Trunk muscle activation during dynamic weight-training exercises and isometric instability activities. J Strength Cond Res. 2007;21(4):1108–12.PubMedGoogle Scholar
  184. 184.
    McBride JM, Larkin TR, Dayne AM, et al. Effect of absolute and relative loading on muscle activity during stable and unstable squatting. Int J Sports Physiol Perform. 2010;5(2):177–83.PubMedCrossRefGoogle Scholar
  185. 185.
    Saeterbakken AH, Fimland MS. Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces. J Strength Cond Res. 2013;27(4):1101–7.PubMedCrossRefGoogle Scholar
  186. 186.
    Behm DG. Neuromuscular implications and applications of resistance training. J Strength Cond Res. 1995;9(4):264–74.Google Scholar
  187. 187.
    Behm DG, Anderson KG. The role of instability with resistance training. J Strength Cond Res. 2006;20(3):716–22.PubMedGoogle Scholar
  188. 188.
    Sale D, MacDougall D. Specificity in strength training: a review for the coach and athlete. Can J Appl Sport Sci. 1981;6(2):87.PubMedGoogle Scholar
  189. 189.
    Rutherford OM, Jones DA. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100–5.PubMedCrossRefGoogle Scholar
  190. 190.
    Shimada H, Obuchi S, Kamide N, et al. Relationship with dynamic balance function during standing and walking. Am J Phys Med Rehabil. 2003;82(7):511–6.PubMedGoogle Scholar
  191. 191.
    Clamann HP, Gillies JD, Skinner RD, et al. Quantitative measures of output of a motoneuron pool during monosynaptic reflexes. J Neurophysiol. 1974;37(6):1328–37.PubMedGoogle Scholar
  192. 192.
    Grillner S, Udo M. Recruitment in the tonic stretch reflex. Acta Physiol Scand. 1971;81(4):571–3.PubMedCrossRefGoogle Scholar
  193. 193.
    Hermans V, SAJ. Evaluation of EMG parameters during force production and sustained contractions. In: Hermens HJ, Merletti R, Freriks B, editors. Biomedical and Health Research Program SENIAM—European activities on surface electromyography. Roessingh Research and Development; 1996. p. 154–8.
  194. 194.
    Milner-Brown HS, Stein RB, Yemm R. The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol. 1973;230(2):359–70.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Milner-Brown HS, Stein RB, Yemm R. Changes in firing rate of human motor units during linearly changing voluntary contractions. J Physiol. 1973;230(2):371–90.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Duchateau J, Hainaut K. Mechanisms of muscle and motor unit adaptation to explosive power training. Strength and power in sport. Oxford, UK: Blackwell Science; 2003. p. 316–30.
  197. 197.
    Kraemer WJ, Zatsiorsky VM. Science and practice of strength training. Champaign: Human Kinetics; 2006. p. 50.Google Scholar
  198. 198.
    Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol. 1976;40(1):12–6.PubMedGoogle Scholar
  199. 199.
    Perry J, Burnfield J. Gait analysis: normal and pathological function. New Jersey: Slack Incorporated; 2010.
  200. 200.
    Nuzzo JL, McCaulley GO, Cormie P, et al. Trunk muscle activity during stability ball and free weight exercises. J Strength Cond Res. 2008;22(1):95–102.PubMedCrossRefGoogle Scholar
  201. 201.
    Bandy WD, Hanten WP. Changes in torque and electromyographic activity of the quadriceps femoris muscles following isometric training. Phys Ther. 1993;73(7):455–65.PubMedGoogle Scholar
  202. 202.
    Gardner GW. Specificity of strength changes of the exercised and nonexercised limb following isometric training. Res Q. 1963;34(1):98–101.Google Scholar
  203. 203.
    Kitai TA, Sale DG. Specificity of joint angle in isometric training. Eur J Appl Physiol Occup Physiol. 1989;58(7):744–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Knapik JJ, Mawdsley RH, Ramos MU. Angular specificity and test mode specificity of isometric and isokinetic strength training. J Orthop Sports Phys Ther. 1983;5(2):58–65.PubMedCrossRefGoogle Scholar
  205. 205.
    Meyers CR. Effects of two isometric routines on strength, size, and endurance in exercised and nonexercised arms. Res Q. 1967;38(3):430–40.PubMedGoogle Scholar
  206. 206.
    Rasch PJ, Pierson WR. One position versus multiple positions in isometric exercise. Am J Phys Med Rehabil. 1964;43(1):10–2.Google Scholar
  207. 207.
    Rasch PJ, Pierson WR, Logan GA. The effect of isometric exercise upon the strength of antagonistic muscles. Int Z Angew Physiol. 1961;19(1):18–22.PubMedGoogle Scholar
  208. 208.
    Thepaut-Mathieu C, Van Hoecke J, Maton B. Myoelectrical and mechanical changes linked to length specificity during isometric training. J Appl Physiol. 1988;64(4):1500–5.PubMedGoogle Scholar
  209. 209.
    Flicker PL, Fleckenstein JL, Ferry K, et al. Lumbar muscle usage in chronic low back pain. Spine (Phila Pa 1976). 1993;18(5):582–6.CrossRefGoogle Scholar

Sem comentários:

Enviar um comentário

Gostou do meu Blog? Envie a sua opinião para lmbgouveia@gmail.com